NewEast Biosciences pioneered the research and development of the antibodies for GTPases and mutated Oncogene ten years ago. GTPases involve (1) signal transduction in response to activation of cell surface receptors, including transmembrane receptors such as those mediating taste, smell and vision, (2) protein biosynthesis at the ribosome, (3) regulation of cell differentiation, proliferation, division and movement, (4) translocation of proteins through membranes, (5) transport of vesicles within the cell, and vesicle-mediated secretion and uptake, through GTPase control of vesicle coat assembly. An oncogene is a gene that has the potential to cause cancer.
We offer three unique categories of antibodies, which (1) recognize only the active configuration of GTPase (not the inactive one), (2) mutated Oncogene (not mild type) and (3) have super affinity for cAMP and cGMP (no acetylation required). We have over one thousand peer reviewed articles cited our products.
$349.00
Cat.#: S221830 | ||||
Product Name: Anti-NOG Rabbit Polyclonal Antibody | ||||
Synonyms: SYM1; SYNS1; SYNS1A | ||||
UNIPROT ID: Q13253 (Gene Accession – NP_005441 ) | ||||
Background: The secreted polypeptide, encoded by this gene, binds and inactivates members of the transforming growth factor-beta (TGF-beta) superfamily signaling proteins, such as bone morphogenetic protein-4 (BMP4). By diffusing through extracellular matrices more efficiently than members of the TGF-beta superfamily, this protein may have a principal role in creating morphogenic gradients. The protein appears to have pleiotropic effect, both early in development as well as in later stages. It was originally isolated from Xenopus based on its ability to restore normal dorsal-ventral body axis in embryos that had been artificially ventralized by UV treatment. The results of the mouse knockout of the ortholog suggest that it is involved in numerous developmental processes, such as neural tube fusion and joint formation. Recently, several dominant human NOG mutations in unrelated families with proximal symphalangism (SYM1) and multiple synostoses syndrome (SYNS1) were identified; both SYM1 and SYNS1 have multiple joint fusion as their principal feature, and map to the same region (17q22) as this gene. All of these mutations altered evolutionarily conserved amino acid residues. The amino acid sequence of this human gene is highly homologous to that of Xenopus, rat and mouse. | ||||
Immunogen: Synthetic peptide of human NOG | ||||
Applications: ELISA, IHC | ||||
Recommended Dilutions: IHC: 30-150; ELISA: 5000-10000 | ||||
Host Species: Rabbit | ||||
Clonality: Rabbit Polyclonal | ||||
Isotype: Immunogen-specific rabbit IgG | ||||
Purification: Antigen affinity purification | ||||
Species Reactivity: Human, Mouse | ||||
Constituents: PBS (without Mg2+ and Ca2+), pH 7.4, 150 mM NaCl, 0.05% Sodium Azide and 40% glycerol | ||||
Research Areas: Signal Transduction, Developmental Biology | ||||
Storage & Shipping: Store at -20°C. Avoid repeated freezing and thawing | ||||
|